More Suprime-Cam Images on Comet Hunters
We’re in the home stretch for the project, we’ve got the last set of Suprime-Cam asteroid images on the site for review. These were in directories we had issues uploading onto the site. So we waited until the end to go back and upload any remaining files we were missing. We need your help to complete this dataset. Once we’re completely finished, the science team can complete the full review of the Suprime-Cam images where the majority of classifiers thought the asteroids looked significantly different from the stars. We haven’t yet found a main belt comet, but we’ll be able to put constraints on how frequent asteroids exhibit this type of behavior. Help us finish the Suprime-Cam images today at http://www.comethunters.org
Currently Out of Data on Comet Hunters
A quick note to give an update on the project. Thanks to your help we’re out of images on Comet Hunters. By completing the active images on the site, the project has searched the last big batch of data from our Suprime Cam search. This set of images nearly completes our current Archival Suprime Cam search. We have some partial or incomplete downloads to upload, and those images will need review on the site. I’m aiming to get these images uploaded in the next few weeks. I’ll keep you posted.
With this set of images, the science team can focus on reviewing the candidate comets (based on your classifications) and estimating what is the activity rate in the main belt of the asteroid belt. We’ll keep you posted on the science team’s progress.
We’re still having some processing issues with the HSC imagery. I hope we’ll have new images for that search soon, but in the meantime thank you for all the time and effort you’ve put into Comet Hunters. From all of us on the science team, we really appreciate it.
Update on Comet Hunters
I know it’s been a long time since we’ve posted on the blog. As most astronomers and planetary scientists, the science team is juggling multiple projects and other support and service duties. It’s a new year, and some of us have have more time to devote back to Comet Hunters. Many thanks to our Talk moderators who have been pointing out are tirelessly pointing out questions and helping out with new members of the Comet Hunters community.
We’ve still been having issues getting new HSC subject images ready for the site, for now I’ve paused that workflow to focus on the Archival search, which is planned to be the project’s first paper. Thanks to your help we’ve moved through of the search, and we’ve uploaded the new batch of images. This set will basically finish off our sample of asteroids we wanted to search for the first paper. That’s why we decided to focus on this right now, rather than the HSC search.
This batch of Archival images includes some of the asteroids observed at launch but has improved positional accuracy and has sources identified in the images that were popping up as blank. It will important to have these classifications so that all the asteroid observations were produced the same way .
Thanks for your help with Comet Hunters. More news soon.
Making a Push on the Suprime-Cam Search and Waiting on New HSC Images
I wanted to give an update on both Comet Hunters Searches
HSC Search: Thanks to your help, we’ve completed all the live HSC images. We’re currently working on processing more images. We had some data processing challenges that are not solved. We hope to get new images on site by the end of February. Stay tuned for to this space for more updates.
Archival Search: We’re working towards the first paper, that will focus on the Suprime-Cam Archival Search. We’ve started to work on some of the paper text and analysis. One of the next steps is to compare to what automated analysis suggests might have a point-spread function. We think this would be an interesting comparison. We’d like to include as much completed Suprime-Cam observations in our analysis as possible. If you can spare some time, please classify an image or two on the Archival Search today at http://www.comethunters.org
Blends, Blends Blends
The science team is working on incorporating data from the Hyper Suprime-Cam (HSC) survey into Comet Hunters. We started with the archival Suprime-Cam data first to get a better understanding of what are the false positives and challenges for identifying Main-Belt Comets (MBCs) in data from 8-10-m class telescopes. We’ll continue with both datasets as there’s more Suprime-Cam asteroids, but when we have the chance we’ll move to reviewing the new HSC observations hopefully a few days after they’re taken.Most previous asteroid detection surveys are using 1-3-m class telescopes, so there are bound to be surprises that we wanted to know about before we developed the decision tree for the HSC snapshots on to the site. So we launched Comet Hunters with the archival Suprime-Cam images first. Now that things are going smoothly, we can turn our attention to the HSC data.
We combined your classifications from the first batch of Suprime-Cam images and had 125 candidates in need of further vetting. Thanks to volunteer Tadeáš Cernohous who on Talk went through our list comparing repeat images of the asteroid at slightly different positions in the same batch of subjects. What we learned that all of the candidates are unfortunately blends with stationary background sources. There are lots of faint background blobs that the asteroid moves on top of overlapping in the images creating very tail-like features. All of these images the science team would have had said has a tail.
A few examples are below (all blends with faint background sources):

Looks like a candidate tail, but a blend with a background source. We’d want this marked as ‘has a tail’ in the classification interface.

Looks like a candidate tail, but a blend with a background source. We’d want this marked as ‘has a tail’ in the classification interface.

Looks like a candidate tail, but a blend with a background source. We’d want this marked as ‘has a tail’ in the classification interface.

Looks like a candidate tail, but a blend with a background source. We’d want this marked as ‘has a tail’ in the classification interface.
There’s a lot more blends than we had anticipated given some of the team’s past experience with 2-m asteroid survey data. It’s still very much worth digging into the rest of the Suprime-Cam archive to look for MBCs. There might be many blends, but there could still be undiscovered MBCs too! Knowing that the background blends rate is much higher because of the increase in the photon collecting bucket is extremely useful. From the candidates, we could see the blends are faint blobby structures that would be likely hard to get a source extractor to pick up in all cases. Because of the quality of the HSC data and the repeat observation cadence we can try and take this into account possibly by checking the image of the asteroid and the repeat image of the same position take later on in the same night (not all Suprime-Cam images will have that and are taken in all types of sky conditions).
Now the Comet Hunters team is thinking about how best to develop a classification interface for the HSC data to include this. In the meantime, there are new Suprime-Cam images in need of review at http://www.comethunters.org if you have a minute or two to spare.
First Set of Images Complete but More Coming Soon
You might have noticed the blue banner currently on the Comet Hunters website. That’s because thanks to your help, we’ve completed the classifications needed to retire all the images that were live on the site. The team has been working to process a new batch of asteroid images. We’ve taken our time to improve on some of the data reduction issues you might have noticed in the launch images (streaked asteroids, more off center asteroids images, and some bad quality images). By having people spot and comment on these features in the images, we’ve been able to refine the data processing pipeline for this next batch of images. We will have those images live ASAP. Stay tuned to this space.
Most of the Comet Hunters science team chatted today, and we’ve decided to put on Talk our top comet candidates based on your classifications. As we’ve found thanks to your classifications and Talk comments, overlaps with background sources are a huge source of false positives for 8-m class telescope images of asteroids when you’re searching for comet-like tails. If you’re interested, we could use your help to review other images to see if the potential tail is a background galaxy or star when you view the same area after the asteroid has moved. More details here.
More about Suprime-Cam
Today, I thought I’d give you a different view of the camera and images that you currently see on Comet Hunters. Right now we’re showing archival images of asteroids from the Subaru Telescope with Suprime-Cam.
Suprime-Cam can image a 0.25 of a square degree patch of sky in a single observation, that’s a bit bigger than the size of the full moon as viewed from Earth. Until a few years ago with the first light of its successor instrument, Hyper-Suprime-Cam, Suprime-Cam reigned as the largest field-of-view camera on the 8-10-m class telescopes,currently the largest ground-based telescopes. Suprime-Cam is an 80-mega pixel camera weighing in at 650 pounds and located at the prime focus of the Subaru Telescope. You can learn about the camera first light and commissioning here and about the upgrade of the camera is 2008 here.
Suprime-Cam is equipped with 10 CCDs (charged coupled devices) that actually receive the photons and and are read out to produce the images we show on Comet Hunters. Subaru has two rows of 5 CCDs. You can rotate the direction of the camera as well. If you display all 10 CCDs from a single observation it looks something like this if you have the widest part of the camera along the East-West direction (for Right Ascension). If the full moon was imaged it would fill most of the imaging plane:
You can see the different CCDs and amplifiers that read out the electrons trapped in the CCD’s wells are slightly different from each other as well as the effects of how light travels through Subaru’s optics. We can take all of that out with calibration observations (flat field observations, dark and bias images). This image is pretty much a raw image off the telescope. The white lines in a grid are the small gaps/boundaries between each of the different CCDs. Let’s zoom in a bit further between the two center CCDs so you can get a better view:
Now (in the above image) you can start to see how many stars are on each of those CCDs. And if we keep zooming in…
We show a much more zoomed in image on Comet Hunters focused very close around the asteroid and reference stars.
The width and height is 20 arcseconds (100 pixels) for the bigger image on the left (the asteroid image) . On the right, two little reference star subimages are ~10 arcseconds (50 pixels) for the size. For a sense of scale each of the 10 Subaru CCDs are about 2048 x 4096 pixels